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The instability of an anticyclonic solid-body rotating eddy embedded on a quiescent 
environment is studied, for all possible values of the parameters of the unperturbed 
state, i.e. the vortex’s relative thickness and rotation rate. The Coriolis force is 
fundamental for the existence of the eddy (because the pressure force has a 
centrifugal direction) and therefore this analysis pertains to the study of mesoscale 
vortices in the ocean or the atmosphere, as well as those in other planets. 

These eddies are known to be stable when the ‘second’ layer is assumed 
imperturbable (infinitely deep) ; however, here these vortices are found to be unstable 
in the more realistic case of an active environment layer, which may be arbitrarily 
thick. 

Three basic types of instability are found, classified according to the dynamic 
structure of the growing perturbation field, in both layers : baroclinic instability 
(Rossby-like in both layers), Sakai instability (Poincar6-like in the vortex layer and 
Rossby-like in the environment), and Kelvin-Helmholtz instability (Poincar6-like in 
both layers). In  addition, there is a hybrid instability, which goes continuously from 
the baroclinic to the Sakai types, as the rotation rate is increased. 

The problem is constrained by the conservation of pseudoenergy and angular 
pseudomomentum, which are quadratic (to lowest order) in the perturbation. The 
requirement that both integrals of motion vanish for a growing disturbance, 
determines the structure of the latter in both layers. Furthermore, that constraint 
restricts the region, in parameter space, where each type of instability is present. 

1. Introduction 
The study of the stability/instability of a given solution (the basic state) of a 

hydrodynamical model, is aided by the analysis of its conservation laws. If the basic 
flow is steady, then there is an integral of motion which is quadratic to lowest order 
in the perturbation : the pseudoenergy YE. The (angular) pseudomomentum 9M is 
similarly constructed for an (axial) symmetric basic state. An arbitrary combination 
of both integrals, say 9E - a&, is used to analyse a priori the stability/instability 
properties of a basic flow, like the one studied here, which is both steady and 
symmetric. 

The following is a sufficient stability condition : 

‘3a such that JE-a9M is sign definite’ 

and its contraposition is a necessary instability condition, 

‘YE - aJM must be sign indefinite Qa ’ 
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(see for instance Ripa 1991, hereinafter denoted by R91). The motion in phase , 

space is constrained to the intersection of the family (with a as parameter) of 
hypersurfaces = constant. If the basic state is unstable, then there are 
trajectories that leave any neighbourhood - no matter how small - of this point of 
phase space. Since that neighbourhood may be arbitrarily small, the family of 
hypersurfaces YE-aYM = 0 go through the basic state point,? defining the stable 
and unstable manifolds; this property is used in the following section to discuss 
a priori the properties of growing and decaying perturbations. 

As an example, consider a perturbation composed of just one growing or decaying 
normal mode, i.e. a solution of the linearized equations with an exp ( -iiwt+ht) time 
dependence, such that w and h are real, and h is either positive or negative : Since the 
quadratic part of YE and YM is both constant and proportional to  exp (2ht),  it must 
be YE = YM = 0 for this particular perturbation; a similar argument holds for an 
algebraically growing disturbance. Now, a vanishing value of both YE and YM is 
accomplished through a compensation of its positive and negative parts : this balance 
might say something on the nature of a growing perturbation. 

Ocean anticyclones are often studied with the so-called li-layer (or one-layer 
reduced gravity) model; if the vortex is solid-body rotating and circular, then it is 
not only normal modes stable (Killworth 1983) but also formally stable (Ripa 1987, 
hereinafter referred to as R87), i.e. stable to perturbations of arbitrary shape, in the 
sense described above (YE-aYM positive definite, for some a and any perturbation). 
(As a remainder of the difference between both kinds of stability, recall that Couette 
flow is (formally) unstable to perturbations which grow linearly with time, even 
though it is stable to normal mode perturbations.) However, a sufficiently elliptical 
vortex (in the same 1;-layer model) becomes unstable (R87 ; Ripa & Jimknez 1988). 
In  this paper I investigate the possibility of another destabilizing agent: an active 
second layer ; Paldor & Nof (1990) have studied the instability of a particular subset 
of the vortices considered here, namely those with vanishing potential vorticity. 

A vortex which is stable in the la-layer model may become unstable in a two-layer 
system, for two reasons : it is harder to guarantee positive definiteness of wave energy 
(R91), and there are more degrees of freedom available to  construct a growing 
disturbance. The latter is seen clearly if the perturbation is Galerkin expanded, as 
done here, following Sakai (1989). Although both the 1;- and 2-layer systems are 
mathematically well-posed problems, it is obvious that the latter allows for a more 
realistic approximation to real ocean dynamics. The importance of the second layer 
has been pointed out by other authors, in different scenarios (e.g. Chassignet & 
Cushman-Roisin 1991) ; one common objective to all these studies is t o  determine to 
what extent, and when, is the 1;-model a good approximation of the more realistic 
2-layer one. 

The rest of this paper is organized as follows: the model equations, conservation 
laws, and their implications for the stability problem are discussed in $2. The 
following section is devoted to the development of the Galerkin basis for the 
variables in each layer (some mathematical details are left for an Appendix). A 
complete description of the stability analysis is given in $4, and the general 
conclusions are presented in the last section. 

t If the system is formally stable, on the other hand, for those values of a such that the first 
theorem applies, the set for YE-a.FM = 0 is just the basic state point. 
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FIGURE 1. Cross-section of the basic state: a vortex is solid-body rotating at an (anticyclonic) 
angular speed - ~ f  (0 < E < l ) ,  and its maximum thickness equals y times the total depth of the 
system (0 c y c 1) .  

2. Model equations 
Consider an anticyclonic eddy, solid body rotating at  an angular speed u and with 

radius a (see figure 1);  u = Q+Q, of the limiting case of a circular vortex in R87. 
Let the vortex fluid, denoted by a subscript v, be immersed in another layer 
(subscript e, for environment) whose horizontal extent is the whole f-plane. The 
thicknesses H ,  and the radial U and azimuthal V velocity components in this basic 
state are given by 

[gr Hv, uv, vv] = [*( f - a) (a2 - r 2 ) ,  0, - ur]  (0 < r < a ) ,  

in the vortex layer, and 

in the environment layer, where the three constants gr, f and H ,  are the buoyancy 
jump across the interface between both layers, Coriolis parameter, and total depth 
of the model, respectively. Notice that uniform rotation corresponds to a parabolic 
profile of the interface. The potential vorticity fields in this basic state are given by 

Qv(r) = (f-2c)/Hv(r), Qe(r) =f/He(r). 

Two non-dimensional parameters characterize any one of these equilibrium states : 
the Rossby number and the relative vortex depth 

E := a/f, y := Hv(0)/HT; 

here I am interested in the range 0 < E < 1, 0 < y < 1, which corresponds to the 
physically meaningful solutions (except that y could be larger than unity, indicating 
a vortex that covers the whole vertical extent of the model, with fronts in both 
horizontal boundaries). The interpretation of these parameters follows. 

The radial momentum equation inside the basic vortex shows that the Coriolis 
acceleration -fv, equals the sum of the pressure force -grdHv/dr plus the 
centrifugal force V",/r;  the last two terms have the same sign, and each one becomes 
negligible - with respect to the other one - in the limits e+ 1 and e+ 0, respectively. 
At  E = t ,  pressure and centrifugal force are identical and the potential vorticity in the 
vortex layer vanishes ; this is the case studied by Paldor & Nof (1990). 

On the other hand, y = 0 corresponds to the li-layer model (HT+oo) ,  in which the 
vortex is formally stable, as discussed in Q 1 (this includes the range e > +, where the 
necessary, but not sufficient, condition for inertial stability is satisfied). Finally, for 
y + 1, the vortex 'kisses ' the opposite horizontal boundary. 
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The linearized evolution equations can be written in the form 
Let vv and?, denote the perturbation fields in both layers, q~ := ( p ,  u )  with u := (u, v). 

a t ~ v +  Lv, = ( a t +  u v . V )  b e >  

at DVe + LeVe = at  D b v ,  

where IL, P and D are 3 x 3 matrix operators, defined by 

0 gr az (Hv gr a y  (Hv 

0 0 0  0 0 1  

with f* := f-2a. The effect of the basic state is a non-uniform topography for both 
layers; in addition, the first layer suffers an advection and a change of the effective 
Coriolis parameter. The coupling of the state variables of both layers is done through 
the interface elevation 6 (the perturbed depth of each layer equals H ,  - 6 and He + 6, 
respectively), which satisfies p , -p ,  = gp 6. 

The linearized laws of potential vorticity conservation are 

( a t +  uv.V)Ev+UvQv,r = 0, a t E e + u e Q e , r  = 0, 

where 

are the first variations of potential vorticity, Q,,, := dQ,/dr ( = ra( f - a) (f - 2a) H i 2  
in our case) and Q,,,:  = dQ,/dr = -ra( f - cr) fHL2. 

Two quadratic integrals of motion are derived from the linearized evolution 
equations for the perturbation: the pseudoenergy YE, which owes its existence to 
time-invariance of both the model equations and the basic flow, and the (angular) 
pseudomomentum YM, derived from the axisymmetry of model equations and basic 
state. The pseudoenergy is the sum of the wave energy and a Casimir, say, 
9E = &+WE; similarly the pseudomomentum is the sum of the wave angular 
momentum and another Casimir, YM = A? + WM. The Casimirs are just functionals of 
the potential vorticity perturbation field, suitably chosen so that 9E = constant and 
9M = constant (see R91). It is important to point out that  9E and 9M are the lowest- 
order (quadratic) term of two exact integrals of motion, of the fully nonlinear 
problem (R91). 

As mentioned before d is the wave energy, and A? is the wave momentum, 
measured in the f-plane : it is easy to see that d - aA? equals the wave energy in a 
frame rotating with speed a relative to the earth. [This should not be taken as 
implying that the evolution equations are covariant under a change to a rotating 
frame; the are not (see R87).] I n  order to present the formulae for YE and YM, it is 
useful to  split a general combination of both integrals of motion in the form 

E;, := (2 .V x u,+[Q,) /H, ,  E;, := (2 .V x u,-6Qe)/He 

YE -a& = &:(a) + &:(a) + dp + %,(a) + %e(a) , -- 
8 - U A ?  qE - aWM 
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Condition for 
Contribution positive definiteness 

&ju) +&:(a) + &‘p 

%(a, 
U/B = -1,2ys < l--s 
(u/cr+ 1) (2s-1) > 0 

%(4 a/u > 0 

TABLE 1 

where &!(a) and &:(a) are the kinetic and &P is the potential wave energies. The 
individual contributions (multiplied by 2gr, for simplicity) are 

&:(a) := d2X[grHvu:+2(Vv-ar) v v ( ~ v - ~ e ) I ,  

&:(a) := d2xgrHeuE+2 d2xarme(p,-pe), 

S,,a 

S,,, 
:= Jr<ad2x bv-pe l2 ,  

V -ar 

Qv. r 
d2x g, IZ; E:, 

WeB,(a) := - /r<ad2~grH:-[:. ar 

Qe, r 

The sum of the five terms above is then an integral of motion for an arbitrary 
initial perturbation and for any value of a. Our next task is to discuss the relative 
importance of the various terms, and relate it to the nature of particular 
perturbations in each layer. In particular, one wants to compare the positive definite 
terms with those that might be negative (second part of the wave kinetic energies 
and wave Casimirs) because for a perturbation growing away from an unstable basic 
state it must be possible to get $E-dM = Ova, as discussed in $1.  

Table 1 shows in which region of parameter space ( B ,  y),  and for which values of 
a,  each one of three contributions to $E-a$M (wave energy and wave Casimir in 
each layer) is positive definite. For instance, in order for the wave energy to be 
positive definite, it is necessary that (V, -ar)2/Hv + (ar)2/He < g,, Vr (R91) ; since 
H ,  = 0 at r = a, this condition can only be satisfied for a = Vv(a)/a = -v,  and it 
further requires 2ye < 1 - 8. The other two conditions come from the analysis of the 
sign of ( V - v r )  d&/dr, in each layer. 

Primitive equations models have, usually, two types of waves : Poincark and 
Rossby ones. Poincark waves are mainly due to gravity effects, and are affected by 
earth’s rotation. Rossby waves, on the other hand, owe their existence to a gradient 
of ambient potential vorticity, either because of the change of the Coriolis parameter 
with latitude (planetary modes) and/or to inhomogeneities in the thickness of an 
isopycnal layer (topographic modes). 

Poincare waves have a negligible potential vorticity perturbation and an 
important horizontal divergence, namely H2151 -4 IV. ( H u ) ~ ;  for these modes it is 
lb-aAl 9 IWE-aWMl (except for very large horizontal scales, compared with the 
deformation radius, i.e. in the limit of inertial waves, in which both parts of the 
integrals of motion are of the same order), simply because the Casimirs are 
functionals of E2. The opposite is true for Rossby waves: Indeed, in the quasi- 
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0 1 

FIQURE 2. A priori predictions from pseudoenergy and angular pseudomomentum conservation : 
for unstable vortices in the horizontally (vertically) hatched region, a growing perturbation must 
be Rossby-like in the environment layer (Poincar6-like in the vortex layer). 

E 

geostrophic theory (which filters out Poincare‘ modes) the horizontal flow and the 
wave energy are a priori assumed to be exactly non-divergent and positive definite, 
respectively (e.g. see Ripa 1992). 

The following general conclusions can be obtained, from analysis of table 1 : 
( a )  There is no value of a such that 3E-a9M is sign definite, for any vortex (i.e. 

for any value of y and E) ; therefore, no vortex in this family is formally stable (i.e. 
if there are stable vortices, their stability cannot be proved by Amol’d’s method). 

( b )  If s > t (vertically hatched region in figure 2), the only non-positive definite 
contribution to the pseudoenergy in the Earth’s frame, YE, comes from bt(0). 
Consequently, for unstable vortices in this region of parameter space, a growing 
perturbation must have a Poincark-like structure in the vortex layer. This component 
must have a negative kinetic wave energy, large enough to balance all other terms 
(which are positive). 

( c )  If 3s < 1 or [3s > 1 and 2ya < 1-81 (horizontally hatched region in figure 2), 
on the other hand, the only non-positive definite contribution to the pseudoenergy 
in a frame rotating with the vortex, YE + c&, comes from U,( -c). Consequently, 
for unstable vortices in this region of parameter space, a growing perturbation must 
have a Rossby-like structure in the environment layer. The potential vorticity 
disturbance must be large enough for the wave Casimir in this layer to balance all 
other terms, which are positive definite. 

for Poincare’ (Rossby) 
waves has been shown explicitly is the equatorial ,&plane (Ripa 1982) ; this system 
also has a mode that goes continuously from being Poincar6-like to being Rossby-like 
-the Yanai wave. We shall find that also in the problem studied here, and therefore 
predictions ( b )  and (c) (conjectured in R91) will need some qualification. 

The integrals of motion were deduced making no assumption on the structure of 
the perturbation (in fact, they are written so that they are correct for profiles V, not 
necessarily equal to -m). Takehiro & Hayashi (1992) have shown how the 
stability/instability results derived from conservation laws are related to the 
concepts of over-reflection and turning and critical lines. This section finishes with a 
heuristic interpretation of both regions in figure 2. In the first place, if 8 < f(8 > S), 
the gradient of ambient potential vorticity in the vortex layer is towards (away from) 
the centre ; the basic flow is ‘westward ’ (‘eastward ’). Consequently, for vortices in 
the vertically hatched region of figure 2 there cannot exist Rossby waves (say, in a 

One system where the statement IAl >> (IAl Q 
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WKB sense) in the vortex layer with a critical radius (consistent with point ( b )  
above). On the other hand, it is possible to show that for vortices in the horizontally 
hatched region it is g,H,(r) > G(r) (0 c r c a ) ,  i.e. the Poincar6 waves in the 
environment layer travel faster than the vortex and are effectively decoupled from 
a perturbation with a critical radius there (consistent with point ( c )  above). These 
heuristic arguments also apply to the analysis of the following section, in which the 
perturbation is Galerkin expanded in the manner of Sakai (1989). 

3. Expansion of the perturbation 
The operators -iLv and -iLe are self-adjoint, in the sense of scalar products 

(d,, $,.) := 1 d2x(grHVlia*.lia.+r;,*ria.), 
r < a  

[6b, 6,,] := Jd2xgrHet2$*ri,.+ d2X$$flb,, 

whereAthe * 4enotes complex conjugate. That means that the eigensolutions of 
-iLv#a = da#a and -i[L,&, = 3, have real eigenvalues, da and" S,, and 
orthogonal eigenvectors. Furthermore the latter form a complete basis, {$ha}  U {&}, 
suitable for the expansion of the perturbation fields, say 

J 1 , a  

p)v(x? t ,  = C A a ( t )  $ a ( X ) ,  v e ( x ,  t ,  = C B b ( t )  6 b ( x ) *  
a b 

The eigenvectors are normalized so that 

from which it follows A ,  = (d,,q,,) and Bb = [$bb,qe]. 

Notice that (rpv,qv) is but the contribution of vv to YE+aYM (which is the 
pseudoenergy in a frame rotating with the vortex), whereas [Q),, v,,] is the contribution 
of cpe to XE (in the earth's frame). It is easy to show that the contribution of cpv to 
both YE and XM has a diagonal representation in {#a},  and similarly for ve a?d 
{gb}. In order t o  do that, first the axisymmetry of the problem is used to make $ha, 
#b  oc exp (im9), where 9 is the polaf: angle and m is the corresponding wavenumber. 
It then follows from - iLv #a = da $ha and - iL, $b = dbD$b and the normalization of 
the eigenvectors that 

A A  

($ha, #a') = 'aa.9 [ 6 b ,  6b .I  = 'bb', 

With these results it is trivial to derive the diagonal terms in the expansion of both 
YE and YM, namely, 

for the pseudoenergy, and 

m m & = C 7  IAa(t)12+C-lBb(t)12+ReC ... AX(t)B,(t) = constant, 
a wa+ma b O b  ab 
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for the angular pseudomomentum. There are, of course, non-diagonal terms, 
which come from the integral of - 2 ( ~ v v p , + p , p , ) ,  for 9E, or the integral of 
-2r(vvpe+v,p,), for YM ; the explicit form of the coefficients for these crossed terms, 
indicated by ‘ . . . ’, is not important here. 

I will now derive the equations for the normal modes, and sh2w its relationship 
with these two conservation laws. U?ingA the expansions yv = L’A, $, and ip, = CB, $b 

and the orthogonality conditions ($,, $,.) = Saa, and [$b ,  &,.I = S,, in the evolution 
equations a, pv + IL, ipv = (a, + U, - V) Pp, and Da, pe + IL, QI, = D Pa, pv, and assuming 
an exp ( -iiwt) time dependence, it is easily obtained 

(&-w)Bb + 6J x’,UabA, = 0, 
a 

where the prime indicates sum over components with same azimuthal wavenumber 
m, and 

pab  := Jr,, d2X $3; fjb. 

1 ”  

Recalling the normalization <$,, 4,) = ti&, &] = I ,  i t  follows that < i ; the 4, 
and 6, are normalized so that $3, and jib are real - apart from the factor exp (im9.) - 
and so is pa,. Consequently the normal modes equations are of the form 

Jx = UKX, 

where x groups the A ,  and B, terms, and J and K are (infinite dimensional) real 
matrices. K is symmetric, but J is non-symmetric (if m =I= 0 )  on account of the term 
ma. For m = 0 both matrices are hermitian and therefore the w are real: there is no 
symmetric, or inertial, instability in this problem, even though for a > t it is f& < 0 
in the vortex layer. 

I n  order to  avoid confusion, I will use the word ‘modes’ for the eigensolutions of 
the coupled system, i.e. the solutions of the physical problem, whereas the word 
‘component ’ will be used for the elements of either basis, used in the expansion. The 
latter are much easier to  calculate than the former, because they come from a self- 
adjoint problem, and with less variables. The normal modes are then obtained as the 
eigenvectors of K-’J ; this is done (in $4) for a suitably chosen subset of the basis 
{$,} U {4,}. Of course, it is a delicate question to  decide which components to include 
in the calculation, for a given pair (a,?). 

In  order to gain insight into which components might produce an instability 
(Im(w) .t. 0 ) ,  following Sakai (1989) I will start by analysing the simplest non-trivial 
case : only two components, one from each layer. Making the 2 x 2 determinant equal 
to zero it is easily obtained (omitting subscripts for simplicity) 

[2w( 1 -p2)  -& - 3 -p2maI2 = (& + 3 +p2ma)2 -4( 1 -p2)  &3 

=- (6 + 3 + p2ma)2 + 4p2(3 + ma) & 
= (4 + 3 +pu2ma)2 + 4p2(G + m ( ~ )  3 ;  

in order to be Im(w) =I= 0, it must be 

(&+ma)& -= 0, (&+ma)& < 0, 

i.e. both & and 6 must be between 0 and -mu. (Notice that this is necessary, but not 
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FIGURE 3. Equivalent physical system (cross-section) for the evaluation of the expansion 
components for the vortex layer: an anticyclonic eddy in a one-layer model or Laplace tidal 
equations on a revolution paraboloid. 

sufficient, for instability; for instance if G = 3, for Im(w) =k 0 it is further needed that 
(pmcr), < -4(G+mcr)G.) Let me point out the relationship of this result with the 
sign-definiteness of the integrals of motion YE and YM: 

The general combination Y(a)  := 9M - aYM, when evaluated at the two-component 
truncation, takes the form Y ( a )  = S,,IA12+S,,~12 +2S,, Re (A*B), with S,, S,, = 
(G - ma) (3  -ma)/G(G + mcr). If the basic state is unstable for some perturbation 
expanded by these two components, then all Y(a) must be sign indefinite, i.e. 
S,, S,, < Sf, V a. Now, (4 + mcr) G < 0 implies that S,, S,, < O( < S:,) for a = 0, and 
therefore Y ( 0 )  ( = YE) is sign indefinite ; similarly (3 + mcr) 3 < 0 implies likewise for 
Y (  -cr), and (G+mcr)3 < 0 for Y (  f 00)  ( otYM). Moreover, if 4 = 3, then Y is sign 
indefinite for all a, which is the necessary condition for instability. The condition 
G = 3 defines a curve in the ( 8 , ~ )  space; it is expected (and will be shown) that the 
instability region will cover a finite area in that space, but its extent cannot be 
determined a priori, without explicit knowledge of the value of S,,. 

Sakai (1989) argues, in a similar problem, that the instability region will be near 
the points where G = 3, and he calls this a resonance between both components. I 
have a semantic objection to the use of the word 'resonance' in this context, which 
I shall discuss later. Nevertheless, I am following closely Sakai's intuition in 
constructing both bases and looking for pairs of components such that 6 x 3 in the 
region where (G+mg)G < 0;  afterwards the calculation is refined adding more 
components, similar to those two. 

Since this paper is to a great extent based in that of Sakai, it  might be interesting 
to point out a couple of small differences between the works. First, I use both 
pseudoenergy and pseudomomentum (rather than just the latter), which gives the 
full scenario of figure 2 and the conclusions above (with pseudomomentum alone, 
only ((;+ma) 3 < 0 is obtained). Secondly, there is the distinction between 
pseudoenergy and disturbance energy (or momenta): the latter is the sum of the 
wave energy d plus the mean flow energy, say rfo. It is not possible to calculate bo 
with the solution of the linearized equations (i.e. with vV and v,,), however, its rate 
of change equals that of the Casimir WE ; consequently, when evaluated at a growing 
perturbation bo and qE coincide, and so do pseudoenergy and disturbance energy. 
However, if evaluated at a neutral normal mode (or for a general perturbation), it is 
bo W E ;  pseudoenergy b+V, (which is a more powerful variable) differs from 
disturbance energy &+do (see for instance Ripa 1992, $6). 

3.1. Basis for the vortex layer 
I shall discuss in some detail the eigensolutions of -iL, $, = G, $,, because this 
represents a physical problem of interest per 8e : the normal modes for the vortex in 
a 1;-layer system (i.e. when the other layer is infinitely deep) and are closely related 
to the normal modes (from the state of rest) of Laplace tidal equations in a rotating 
paraboloid (see figure 3). The latter problem was solved by Miles & Ball (1963) from 
which the following results are easily obtained, adding the effects of the vortex swirl. 
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€10 & = 1  €1 1 

Poincark {B:(n 2 1) fl +f(iTlml),  kl-lml 
Z + ( n  = 0) 0 -"I - (1ml);I 1 - Iml 
Z - ( n  = 0) -1  -4" + (1ml)'I - lml 

Hybrid 

Rossby 9,,(n 2 1) 0 -ilml - I 4  
TABLE 2. Eigenvalue of the expansion components for the vortex layer (see figure 4) 

Let $ = exp (im6-iGt) (P( r ) ,  i6(r) ,  P(r)).,  where I have omitted the subscript ' a '  
for simplicity, and the factor i is introduced so that the three functions of r can be 
chosen to be real. The two momentum equations are transformed into 

(4: -f:) 0 = f, mr-1P- G.,, P ,  
( G i - f : )  P =  G,mr-lP-j,P, 

where f* = f - 2a,  G, := C;, +ma,  and the prime indicates derivation with respect to  r .  
Substitution into the continuity equation gives 

r-l(rgrHvP)'+ (G:-f: +m4;lf,a(f-a)-m2r-2g,HvP = 0, 

- recall that  grHv = !p( f - a) (a2 - r2 )  - whose eigensolutions are of the form (Miles 
& Ball 1963) 

P cc rlml p,( - n, n + lmI+ 1 ; Iml+ 1 ; (./a)'), 

where n is a non-negative integer and $', is an hypergeometric function (defined 
by p l ( a ,  b ;  c ;  z )  = 1 +abz/cl  ! +a(a+ 1) b ( b +  1) z2/c(c+ 1) 2 ! +  ... , which in this case 
becomes an nth degree polynomial ; the dispersion relation is determined by 

C;,:+sgn(m) f*G,-Imla(f-a) = 0 if n = 0, 
" 2  
o*-f: +m& = k 2  i f n  > 0, 
4 f - 4  w* 

where k2 := 2n(n+ Iml+ 1)lml (see figure 4). 
For n > 0 there are three roots : two Poincar6 waves, 4; x f: +I%( f - a), and one 

(topographic) Rossby one, G* x mf,/[t? + f ",(a- -a2)]. The former have high 
intrinsic frequency G, (relative to the Coriolis parameter in the frame rotating with 
the basic vortex f,) ; the latter has low intrinsic frequency. Notice that the type of 
component is not determined by the magnitude of the Doppler shifted frequency G, 
relative the Coriolis parameter in the Earth's frame f. 

For the gravest radial component, n = 0, the root G* = sgn (m) f, is spurious and 
has been factored out. The remaining two components change continuously, as a 
function of 8 ,  from being Poincarh-like in one extreme, to  being Rossby-like in the 
other (very much like the Yanai waves do, in the equatorial P-plane) ; they will be 
called hybrid waves. 

Poincark and hybrid components are denoted by 9; and X * ,  where the sign is 
that of d,/mf, and Rossby ones by gn ; see figure 4 and table 2. 

Of course, in the related problem of Laplace tidal equations on a rotating 
paraboloid (Miles & Ball 1963), G, and f, in the above formulae are the actual 
frequency and Coriolis parameter, and there is total symmetry under the change 
E +  1 -e.  (In Miles' problem, E does not have the meaning of a measure of vortex 
rotation; %( l -~ ) ,  which is the square of the ratio between the deformation and 
domain radii, is the only important non-dimensional parameter.) In  the problem of 
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d sgn (m) 

f 1  

0 ‘0  

- 1  

-lml+ 1 

- Iml 

0 1 

FIQURE 4. Eigenvalue of the expansion components for the vortex layer (see table 1) ; the label on 
the curves is the radial number n. The upper (lower) set of curves are the 9; (9;) Poincare’ 
components (n 2 l ) ,  and the set close to the Doppler shift 6 x -mef are the Rossby components 
Se, (n 2 1). Both hybrid components X *  (n = 0), change continuously from the Rossby set to one 
of the Poincare’ sets. This figure in particular corresponds to lml = 3, but i t  is quite generic; 
however, notice peculiarities of the 1m1 = 1 and Iml = 2 cases at the e = 1 end. 

E 

FIQURE 5. Equivalent physical system (cross-section) for the expansion components for the 
environment layer. Notice the difference to figure 1 : the components are mathematical constructs, 
not (necessarily) physical waves. 

this paper, on the other hand, this symmetry is lost, because of the Doppler shift 
w-w* =--ma. 

An interesting case is that of both hybrid waves (n = 0)  for m = f 1 : their 
frequencies are G = 0, and G = T f (for all e )  and correspond to either a shift of the 
vortex centre or to the whole vortex performing inertial oscillations (as discussed by 
Nof 1991 in the case e = i), respectively. 

A ”  

3.2. Basis for the environment layer 
Unlike the case of the previous section, the eigensolutions of - iL, 6, = 3, 036, do not 
correspond to a physically interesting case : they are mathematically equivalent to 
the free modes of a one-layer system with flat bottom and rigid lid for r > a, and with 
free surface and parabolic topography for r < a !  (see figure 5 ) .  Certainly they are not 
the modes of the environment layer when the vortex layer is at rest : they are just a 
mathematical construct, useful for solving, and interpreting, the instability problem. 
This is the reason why I object to the use of the word resonance, which has physical 
implications, for the points G = 3. 

Let 6 = exp (im8-i3t) (P( r ) ,  io(r), v ( r ) ) T ,  the subscript ‘ b ’  is omitted for 
simplicity. The two momentum equations of - iL, 6, = 3, are transformed into 

(Gz-fz) 0 =fmr-lp-@, 
( 3 2  -fz) f = Gmr-lP -fp ; 
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- 1  - 1  - 1  

0 1 
E 

FIQURE 6. Eigenvalue of the expansion components for the environment layer. The upper (lower) 
set of curves are the 9’; (9;) Poincar6 components (n 2 0), and the middle set are the Rossby 
components a , ( n  20); there are no hybrid components in this case. This figure in particular 
corresponds to Iml = 3 and y = 0.9, but i t  is quite generic ; at smaller values of y Poincar6 (Rossby) 
components have larger (smaller) absolute frequencies. 

€10 E,L €1 1 
Poincar4 92(n 0) f l  x +f(K‘2+4)k * 1 
Rossby 9,(n 2 0) 0 x -Im1/(t2+4) 0 

TABLE 3. Eigenvalue of the expansion components for the environment layer (see figure 6) 

substitution into the continuity equation gives oc r-lrnl for r > a (unless 3 = 0)  and 

r - l ( r g r H e P ) ’ +  = 0, 

for r < a ,  where it is g,H,  = ta( f -a) (a2(?-’ - 1)  + r2). This equation must be solved 
subject to P - rlml as r+O and = -Imla-lP at r = a (see the Appendix for more 
details). The eigenvalues are given by 

which, as before, has as solutions two Poincard components, denoted by 9 2  (where 
the sign is that of 3*/mf), and a Rossby one, indicated by g,,; see figure 6 and table 
3. Notice that all dependence in E ( y )  is in the left- (right-)hand side of this equation. 
In the Appendix it is shown that Z2 > +(m2 + 1) 2 Iml and therefore there are no roots 
with Je = f 2, like the spurious one for n = 0 in the vortex basis, which gave origin to 
the hybrid components. 

4. Results 
As explained in $3, I will start by considering instances of pairs of components, one 

from each layer, such that d, = 3, in the wedge (d,+ma)d, < 0, i.e. waves with 
opposite signs of pseudoenergy, 

d,(da +ma)-llA,I, IBbI2, 
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Type of Vortex Environment Azimuthal 
instability mode mode wavenumber Restriction 

Symmetric NO m = O  

Baroclinic g,,nbl 9tnn>0 Iml 2 1 2 e <  1 

Hybrid &?+n=O 

Sakai 9:nal  B " n 2 0  Iml2 2 
Kelvin- N + n  = 0 
Helmholtz 8 : n >  1 Bin 2 0 Iml2 3 27 > e-l-1 

TABLE 4. Types of instability determined by pseudoenergy and angular pseudomomentum 
conservation (figure 2) and the dispersion relations of the basis components in each layer (figures 
4 and 6). The hybrid type goes continuously from the baroclinic to the Sakrti class. 

and of angular pseudomomentum, 

From the results in figures 4 and 6, as well as tables 2 and 3,  it follows that these 
'resonances ' occur in three main types of stability, summarized in table 4. 

There are entries in table 4 for neither m = 0 (indeed normal modes symmetric or 
inertial instability was shown to be absent in this problem) nor for a perturbation 
which is Rossby-like in the vortex layer and PoincarB-like in the environment. This 
type of structure is not, of course, prohibited by pseudoenergy and angular 
pseudomomentum conservation ; however, these laws would 'only ' allow it to exist 
in the triangular-shaped region of figure 2 : ( ( 8 ,  y ) ,  1 > y > $(e-l- 1) and f > E > i}. 

4.1. Baroclinic instability 
This corresponds to a structure which is Rossby-like in both layers ; pseudoenergy 
and angular pseudomomentum conservation predict that it cannot occur in the 
vertically hatched region of figure 2 (e  > a; i.e. the region of the parameter space 
where the structure in the vortex layer is predicted to be Poincar6-like) and/or m = 0 
(no wedge (;,+ma) 3, < 0). 

Figure 7 shows the growth rate Im(o), as a function of (e,  y ) ,  taking only the first 
Rossby component in each layer (for the scale of Im(w), see figure 8). The tongue of 
instability starts at ( E ,  y )  = (O+ ,  0+) (recall that for y = 0, and any E ,  the vortex is 
stable) and widen for larger values of y ,  all the way up to y = 1-. Notice that the 
instability region does not reach the E > region, where pseudoenergy and angular 
pseudomomentum conservation predict that the structure of a growing perturbation 
be PoincarB-like in the vortex layer (see figure 2 ) .  

The beginning of the instability tongue, at y 10, is determined as follows : if E -+ 0 
then 3 - -mms2f; substituting in the dispersion relation for D (chosen equal to &), and 
recalling that Z2 N s 2 / y  as y 10 (where j is the (n, + 1)th zero of the Bessel function 
of order Iml-1; see the Appendix), it follows that 

where 2 = 2n,(n, + Iml+ 1) + Iml with n, 2 1 and lml 2 1. Moreover, looking at the 
normalization of the eigenfunctions in each layer (with the help of the integrals 
presented at  the end of the Appendix) it is found p2 = 0 ( 1 )  and p2 = O(y/e) ,  which 
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0 
FIQTJRE 7. Growth rate M a function of ( E ,  y ) ,  taking only two Rossby components : 4 in the vortex 
layer and Se, in the environment layer (baroclinic instability) ; the azimuthal wavenumber is equal 
to three. The boundaries of the regions of figure 2 are also drawn: notice that, for this type of 
instability, it is Im ( w )  = 0 where a growing perturbation in the vortex layer was predicted to be 
Poincad-like. 

yields 
components with d = 6, it follows 

= O(y/s)  = O(s); using this in the formula for w calculated from two 

The two-component calculation of figure 7 is complemented by that in figure 8, 
where the growth rate of all unstable modes found with 12 x 12 matrices J and K, is 
plotted as a function of E, for three values of Iml and y = 0.9. (I chose to show the 
results for a large value of y ,  so that the differences between the 2 x 2 and 12 x 12 
calculations stand out more clearly.) Several instability branches can be appreciated 
in this figure (particularly, closer to the E = 0 axis), but it is seen that one of them 
is well described by the simple 2 x 2 calculation (the addition of more degrees of 
freedom widens the stability region and increases the maximum growth rate, though, 
as expected). 

4.2. Sakai instability 
This corresponds to a structure which is Poincar6-like in the vortex layer and 
Rossby-like in the environment. Pseudoenergy and angular pseudomomentum 
conservation predict that it can only occur for lnzl 2 2, because otherwise there are 
no 'resonances ' 4, = 3, in the wedge (4, +ma) d, < 0 (see figures 4 and 6). This type 
of instability was first discovered by Sakai (1989), who celled it Rossby-Kelvin 
instability, because the gravest Poincar6-like component in his case was a Kelvin 
wave. According to Sakai, this instability was also present in the (ageostrophic) 
calculation of Orlanski (1988). 

Figure 9 shows the growth rate Im(w), as a function of (E,?), taking only one 
component in each layer: P;," and The tongue of instability starts at 
(8, y )  = (sc, 0+) and widens as y increases. The critical Rossby number corresponds to 
the 4 = 0 crossing of the Poincar6 component in the vortex layer (see figure 4), i.e. 
to h* = mec f ;  substituting in the dispersion relation for the vortex components, it is 
found 

E, 3 ( i? - l ) / (P+m2-2) ,  



Instability of a solid-body rotating vortex 

0 . 0 3 7  
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FIQURE 8. Growth rate as a function of E ,  for the case of baroclinic instability. -, two-component 
calculation of figure I, . . ., those obtained using twelve Rossby components : B,. . . % in the vortex 
layer and 9, ...q in the environment layer. y = 0.9. 

where k2 = 2n,(n, + Im( + 1) + (m(,  with n, 2 land Iml> 2. Notice that, choosing n, 
and Iml appropriately, it is possible to find the beginning of an instability branch as 
close as desired to any value of E .  Close to the critical Rossby number it is easily 
found 

4 - - 7 m f ( ~ - ~ , )  as E J E , ,  

for some positive number 7 ;  substituting in the dispersion relation for D (chosen 
equal to 4), and recalling that k2 - +j2 /y  as y J 0 ,  it follows that 

y - ~ T ( E - E , )  as E J E , ,  

wherej is the (n,+ 1)th zero of the Bessel function of order Iml - 1. Looking, as before, 
at the normalization of the eigenfunctions in each layer, it is found p2 = 0(1) and 
p 2  = O ( y ) ,  which yields ,u2 = O(y)  ; using this in the formula for w calculated from two 
components with 4 = 3, it follows 

Im ( w )  = O(y)  as y 10. 

The two-component calculation of figure 9 is complemented with that in figure 10, 
where the growth rate of all unstable modes found with 12 x 12 matrices 9 and K, is 
plotted as a function of E ,  for y = 0.9 and two values of Iml (there is no Sakai 
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FIQURE 9. As in figure I, for one Poincarb and one Rossby component 9; in the vortex layer and 
in the environment layer (Sakai instability); Iml = 3. The instability region starts at E = p, 

y = o+. 

w 
f 

FIQURE 10. As in figure 8, for the case of Sakai instability. -, two components of figure 9 ; . . ., 
the following twelve components: 9; ...Pi in the vortex layer and 9&...4 in the environment 
layer. y = 0.9. 

instability for Iml < 2). Several instability branches can be seen in this figure 
(particularly, closer to the E = 1 axis), but it is clearly demonstrated that one of them 
is very well described by the simple 2 x 2 calculation of figure 9. 

4.3. Hybrid instability 
In the calculation of w for the first two types, the hybrid component for the vortex 
layer was excluded on purpose. Figure 11 shows Im(w) as a function of ( E , ? ) ,  
calculated using only X +  for the vortex layer and 4 for the environment layer. The 
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1 

0 

FIGURE 11. As in figure 7, for the hybrid component X +  in the vortex layer and the Rossby 
component 4 in the environment layer : this hybrid instability goes continuously from baroclinic 
instability (as in figures 7 and 8) at  low Rossby numbers E ,  to Sakai instability (as in figures 9 and 
10) a t  larger values of E.  

0.25 

w(W) 
f 0.2! 

I 

m = 2  

m = 3  

E 

FIQIJRE 12. As in figure 8, for the case of hybrid instability : -, the two components of figure 11, 
. . . , the twelve components : H+,  4 . . .4  in the vortex layer and @ . . . 4 in the environment layer. 
y = 0.9. 

growth rate of all unstable modes found with 12 x 12 matrices J and K, is presented 
in figure 12 aa a function of E ,  for y = 0.9 and lrnl 3 2 ; there is no hybrid instability 
for smaller values of lrnl (recall comments on the hybrid components for Irnl = 1, at 
the end of 33.1). 

This branch has all the appearance of baroclinic instability, particularly near the 
origin (E, y )  = (O+,  O+) ,  where indeed it is well described by the analysis of $4.1, for 
n, = 0 and Iml 3 2. However, for larger values of y (thicker eddies or shallower 

14 FLM 242 
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0 -  

FIGURE 13. As in figure 7 ,  for two Poincar6 components: Z+ in the vortex layer and 8; in the 
environment layer (Kelvin-Helmholtz instability) ; lrnl = 3. Notice that, for this type of instability, 
Im (0) = 0 in the region of parameter space (figure 2) where the perturbation was predicted to be 
Rossby-like in the environment layer. 

oceans) the instability region reaches the value E = t (zero potential vorticity) here 
the hybrid component no longer behaves as a Rossby wave and it is rather a gravity 
one ; recall that the effective Coriolis parameter is f* = (1 - 2 ~ ) f .  

For instance for the X+ component it is 

-- -? - 6 = 2( 1 - 2 4  ([4(ln~l- 1) E (  1 -8 )  + 11;- 1 + 2E))-’, 
V - ( H u )  W* 

this expression diverges as E +  0 (Rossby-like), vanishes for E = + (Poincarb-like), and 
tends to - 1 as E + 1 (inertial oscillation) ; similarly the ratio of the two components 
of pseudomomentum is also given by A’ : qM : : 2f* : d*. (For the 3?- component, just 
change E by 1 - E . )  Consequently, this hybrid instability goes continuously from the 
Baroclinic type (for small E )  to the Sakai type (for large 8) .  

Paldor & Nof (1990) studied the problem of this paper for the particular case of 
E = + (zero potential vorticity), and y ranging from 1 to approximately 0.23. They 
found the eigenvalues w by numerical integration of the coupled equations for p ,  and 
p,, and did not make a characterization of the associated perturbation structure. 
From the results of this paper, it is clear that what they found is the E = t cross- 
section of the hybrid instability branches, which, at  this value of E ,  have the 
properties of a Sakai instability (see figures 11 and 12). It is interesting to notice that 
nothing special was found here at E = 4, the growth rate curves pass continuously 
through that point. 

4.4. Kelvin-Helmholtz instability 
This classical type corresponds to a structure which is Poincarb-like in both layers. 
Pseudoenergy and angular pseudomomentum conservation predict that it can only 
occur for (ml 2 3,  because otherwise there are no ‘resonances ’ da = 9, in the wedge 
(G,+ma) da < 0 (see figures 4 and 6). Moreover, this type of instability cannot 
happen for vortices in the horizontally hatched region of figure 2, where the structure 
of a growing perturbation was predicted to be Rossby-like in the environment layer. 

Figure 13 shows the growth rate Im ( w ) ,  as a function of ( E ,  y) ,  taking only one 
Poincare’ component in each layer (in the vortex layer, &‘+ was used, which for these 
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0 ‘ 1  

FIGURE 14. As in figure 8, for the case of Kelvin-Helmholtz instability. -, the two components 
of figure 13, . . ., the following twelve Poincar6 components : X+, 9’;. . .9’: in the vortex layer and 
9’;. . .8; in the environment layer. y = 0.9. 

€ 

large values of E behaves as a Poincare wave; see figure 4). The beginning of the 
instability tongue is at ( E ,  y )  = (1-,  0+) ; moreover, substituting 3 = 6 = 
-f(m - sgn ( m ) )  in the dispersion relation for the environment basis, and recalling 
that Z2 - s 2 / y  as y 10, it follows that 

y - $jz(mz - Iml) (1 - E )  as E 1 1, 

where j is the (n, + 1)th zero of the Bessel function of order Iml- 1, and Im( 3 3. 
Notice that this amply satisfies the requirement derived from pseudoenergy and 
angular pseudomomentum conservation (figure 2), which in this region reads 
y > i ( l -a ) ,  as s t  1. 

Finally, looking as before at the normalization of the eigenfunctions in each layer, 
it is found that p2 = O( 1 - E )  = O ( y )  and Pz = O( l) ,  which yields pz = O ( y )  ; using this 
in the formula for o calculated from two components with 6 = 3, it follows 

Im(o)  = ~ ( y i )  asy10.  

The two-component calculation of figure 13 is complemented with that in figure 
14, where the growth rate of all unstable modes found with 12 x 12 matrices 9 and 
K, is plotted as a function of E ,  for y = 0.9 and Iml = 3 (there is no Kelvin-Helmholtz 
instability for smaller values of Iml). Several instability branches can be seen in this 
figure (particularly, closer to the E = 1 axis), but it is clearly demonstrated that one 
of them is quite well described by the simple 2 x 2 calculation of figure 13. 

5. Summary 
The stability of a solid-body rotating vortex in a two-layer system is studied in the 

whole extent of parameter space : ( B ,  y )  E (O,l)@(O, l), where B ,  the Rossby number, 
is the ratio of the (anticyclonic) rotation rate to the Coriolis parameter, and y-l 
equals the model’s total depth divided by the vortex maximum thickness. The 
pseudoenergy YE and (angular) pseudomomentum YM are the only integrals of 
motion, which are quadratic to lowest order in the perturbation ; the following three 
results are derived from their conservation : 

( a )  There is no value of u such that 9E-u.%M is sight definite, for any pair of 
14-2 
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parameters (e,y), i.e. no vortex in this class can be shown to be stable by Arnol’d’s 
method. 

(a) For an unstable vortex with e > t ,  an infinitesimal but growing perturbation 
must be Poincar6-like in the vortex layer, in the sense that it must have negative 
wave kinetic energy, and with a magnitude large enough to cancel the positive 
definite terms (wave kinetic energy in the environment layer, wave potential energy, 
and the ‘wave Casimirs’, whose integrands involve the square of the potential 
vorticity perturbation) ; Rossby waves have positive wave energy. 

( c )  Similarly, if 2y < e - l -  1 (in particular, for any y if E < i), a growing 
perturbation must be Rossby-like in the environment layer, in the sense that it must 
have negative wave Casimir, and with a magnitude large enough to balance the total 
wave energy and the wave Casimir in the vortex layer, which are positive definite in 
this region of parameter space (in a frame rotating with the vortex). 

The normal mode equations are solved by means of a Galerkin expansion of the 
perturbation field (pressure and horizontal velocity) in each layer. Both bases are 
orthonormal and complete ; moreover, each component has the distinct properties of 
a physical wave, Poincar6 or Rossby, even though they are not a solution of the 
complete model equations per se. There are two members of the basis for the vortex 
layer, the hybrid components, which go continuously from being Rossby-like to 
being Poincar6-like, or vice versa, when 6 varies from zero to unity. 

Much insight on the nature of growing normal modes is gained with the greatest 
truncation of the expansion with non-trivial results : only two components, one from 
each layer. This strategy was pioneered by Sakai (1989) in the study of essentially the 
same problem, but in a channel, i.e. with linear, rather than azimuthal, symmetry. 
Instead of too-crude-an-approximation, this approach is a very useful one, because 
there are a myriad instability branches, which are well characterized, as summarized 
below, by this two-component calculation (whose results are later confirmed using 
more components of a similar type). Before going on with the description of the 
results, let me point out that, alas, this is not a universal method but, rather, its 
feasibility depends on the simplicity of the flow chosen for the basic state: uniform 
in each layer. 

Pseudoenergy and (angular) pseudomomentum conservation imply that each one 
of the two components that build up a growing perturbation must have intrinsic 
frequencies of opposite signs in a frame rotating with the vortex and in the Earth’s 
frame (i.e. that in which the environment is at rest for the basic solution). Use of this 
criterion with the eigenvalues of both bases allows for an a priori classification of the 
instability types, in the sense of their dynamical structure, as well as their possible 
values of E ,  y and azimuthal wavenumber m ;  this classification is a posteriori 
confirmed by the numerical analysis. 

Three basic types of instability are found: baroclinic, Sakai, and Kelvin- 
Helmholtz ; corresponding to a Rossby-like structure in both layers, PoincarB-like 
in the vortex layer and Rossby-like in the environment layer, and PoincarB-like in 
both layers, respectively. In addition, there is a hybrid type of instability (linked to 
the existence of the hybrid component in the vortex layer, which has the gravest 
radial dependence), which goes continuously from the baroclinic to the Sakai types, 
as E grows away from zero. No instability type was found with a Rossby-like 
structure in the vortex layer and Poincar6-like in the environment layer: 
pseudoenergy and pseudomomentum conservation would ‘only ’ allow this to exist in 
the triangular shaped region a t  the top of figure 2, which does not reach the ( y  = 0)- 
axis. 
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All these instability types are realized in branches that emanate from a single point 
in the ( y  = 0)-axis (environment infinitely deeper than the vortex) and widen up for 
finite values of y. This is exemplified in figures 7 , 9 ,  11 and 13, with the results of the 
two-component truncation for all ( E , ? ) ,  and compared in figures 8, 10, 12 and 14, 
with a twelve-component calculation made for a large value of y ,  namely 0.9, in order 
to make the differences more clear. 

Baroclinic instability branches start at ( ~ , y )  = ( O + , O + ) ,  with y = O ( 2 )  and a 
growth rate of O(y4); they never reach the (8 =;)-line, as described by point ( b )  
above. Hybrid instability branches start similarly (because they correspond to 
baroclinic instability for low y )  but do cross the (E = #)-line, where they correspond 
to a Sakai instability type. Baroclinic or hybrid instability require Iml 2 1 or Iml 2 2, 
respectively. Sakai instability branches start at  ( e , y )  = (eC,O+),  where 0 < 8, < 1, 
with y = O(E--B,)  and a growth rate of O(y) .  They are constrained by neither point 
(b) nor point (c) above, and require lml 2 2. Finally, Kelvin-Helmholtz instability 
branches start at ( E ,  y )  = (1-, O + ) ,  with y = O( 1 - E )  and a growth rate of O(yf) .  They 
never reach the y = (1 --8)/2~, as prescribed by point (c) above, and require Iml 2 3. 
There is no symmetric (or inertial) instability, i.e. with a m = 0 perturbation, in this 
problem ; not even for E > 4. 

Consequently, there are vortices unstable to perturbations with all azimuthal 
wavenumbers different from zero. In the ;-layer case, on the other hand, elliptical 
vortices are unstable to infinitesimal perturbations with (the equivalent of) Iml 3 3; 
however, at finite amplitudes one filament is formed, not three (Ripa & Jimbnez 
1988). 

Sakai (1989) studied the ageostrophic version of Phillips’ (1951) problem, i.e. an 
f-plane channel with uniform velocity in each one of two layers. This is the parallel 
counterpart of the basic flow in this work, rather than a system with uniform shear 
(e.g. Paldor & Killworth 1987). Sakai’s analysis corresponds to approximately the 
( y  = #)-line in parameter space of this work, with E roughly corresponding to 
2F2/(1 +2F2), where F is the Froude number in Sakai’s paper. The three basic types 
of instability are present, in the same order, in Sakai’s work; no hybrid instability 
is found, though, because there are no hybrid components available in his case. 

Chassignet & Cushman-Roisin (1991) argue that the environment layer does not 
influence the vortex layer if (in the notation of this paper) y g2(1 - E ) ~ .  This 
criterion correctly excludes baroclinic and Kelvin-Helmholtz instabilities, which are 
the fastest - growth rate O(yi) - and are limited to y 2 O(E*) as E 10 and y 2 O ( 1 - E )  
as e 1, respectively. However, it does not exclude the slower Sakai instability - 
growth rate O(y)  - which occurs at virtually any finite value of E E  [0,1]. 

The conclusion that the solid-body rotating vortices are unstable, in the two-layer 
model, does not mean that other swirl profiles can be stable or that similar structures 
may not be observed in more realistic systems, which might include forcing, 
dissipation and nonlinear effects (in particular, saturation of growing perturbations). 

This work was supported by Mexico’s Secretaria de Programacih y Presupuesto, 
through CICESE’s normal funding, and by the Consejo Nacional de Ciencia y 
Tecnologia, under grant D111-903620. The heuristic arguments at the end of $2 were 
suggested by one of the reviewers. 
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Appendix 

h2 := y-l- 1 ,  the equation for P = F(p) in 0 < p < 1 takes the form 
Changing the independent variable from r to p := r / a  and defining the parameter 

p-'[p(A2 +p2) F]' + [ 2 P  - m2 - m2h2p2] F = 0, 

P - PI"' a s p + &  F(1) = -lmlF(1)7 

where Z2 is the eigenvalue. Unfortunately, I do not know of an analytic form for the 
eigensolutions of the environment components, except for h + co(y + 0), which 
reduces the differential equation to that of Bessel functions. In this limit it is - J,(jp) and t2 N $j2h2, where v = Iml a n d j  is the n+ l t h  zero of the Bessel function 
of order v- 1.  Furthermore, writing the eigenvalue in the form 

ordinary perturbation theory yields 

1 
&(O) =j2J;'(j)[ dpJ:(jp)p3< v. 

In the other extreme, h+O (y+l), for p 9 O(h)  it is F -p" with 
( v + 2 )  + 2Z2-m2 = 0,  i.e. F - p-lcos (a+plnp) ,  w i t h p  = 2E2-m2- 1 ; the boundary 
condition a t  p = 1 gives tan a = (Iml- 1)//3. This solution must be matched with a 
inner function, valid for p < A. Since the number of zero crossings between p = 1 and 
p = O(h)  equals the radial mode number n, it  must be a+/3lnA x nx, i.e. 

0 

In sum, it is ~ ( 1 )  = m2 + 1, and the convergence to this value is very slow. 
For all finite values of y, the differential equation was solved in the following 

way : first, the dependent variable is transformed to G(p) := p-1"IF(p) ; secondly, it is 
defined H(p) := aC/aZ2; finally, G and H are calculated from the values G = 1, 
G' = H = H = 0 a t  p = 0, and some initial guess of Z2, all the way up to p = 1, using 
a fourth-order variable step Runge-Kutta integrator. The eigenvalue is then 
improved by Newton's method: Z2+,?'- (21mlG+G')/(2JmlH+H'). Of course, this 
algorithm needs a reasonably good initial guess: it was found that 

y (y )  x (V(0) - m2 - 1 ) ( 1 - y) i  + m2 + 1 

gives a good enough first estimate (convergence is achieved in a few iterations) in the 
whole interval 0 < y < 1 and for all values on n and m used. 

In order to calculate the overlapping ir;ltegral F , ~ ! ,  it  is necessary to normalize the 
eigenfunctions of both bases so that (#,, = [q5b,  $ b ]  = 1. For this purpose, it is not 
necessary to evaluate the velocity fields ria and 5, explicitly, because the following 
identities can be used : 
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for the vortex components, and 

for the environment ones. 
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